NG2 cells (polydendrocytes) in brain physiology and repair

نویسندگان

  • Akiko Nishiyama
  • Ryusuke Suzuki
  • Xiaoqin Zhu
چکیده

NG2 cells, also referred to as oligodendrocyte precursor cells (OPCs) or polydendrocytes, represent a major resident glial cell population that is distinct from mature astrocytes, oligodendrocytes, microglia, and neural stem cells and exist throughout the gray and white matter of the developing and mature central nervous system (CNS). While their most established fate is the oligodendrocyte, they retain lineage plasticity in an age- and region-specific manner. During development, they contribute to 36% of protoplasmic astrocytes in the ventral forebrain. Despite intense investigation on the neuronal fate of NG2 cells, there is no definitive evidence that they contribute substantially to the neuronal population. NG2 cells have attributes that suggest that they have functions other than to generate oligodendrocytes, but their exact role in the neural network remains unknown. Under pathological states, NG2 cells not only contribute to myelin repair, but they become activated in response to a wide variety of insults and could play a primary role in pathogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular and Molecular Characterization of Multipolar Map5-Expressing Cells: A Subset of Newly Generated, Stage-Specific Parenchymal Cells in the Mammalian Central Nervous System

Although extremely interesting in adult neuro-glio-genesis and promising as an endogenous source for repair, parenchymal progenitors remain largely obscure in their identity and physiology, due to a scarce availability of stage-specific markers. What appears difficult is the distinction between real cell populations and various differentiation stages of the same population. Here we focused on a...

متن کامل

Age-dependent fate and lineage restriction of single NG2 cells.

NG2-expressing glia (NG2 cells, polydendrocytes) appear in the embryonic brain, expand perinatally, and persist widely throughout the gray and white matter of the mature central nervous system. We have previously reported that NG2 cells generate oligodendrocytes in both gray and white matter and a subset of protoplasmic astrocytes in the gray matter of the ventral forebrain and spinal cord. To ...

متن کامل

Effects of the Jimpy mutation on retinal structure and function

Progenitor cells expressing proteoglycan NG2 (also known as oligodendrocyte precursor cells or polydendrocytes) are widespread in the grey and white matter of the CNS; they comprise 8-9% of the total cell population in adult white matter, and 2-3% of total cells in adult grey matter. NG2 cells have a complex stellate morphology, with highly b around the cell body. NG2 cells express a complex se...

متن کامل

Neuron-glia synapses in the brain.

The ability to investigate the electrophysiological properties of individual cells in acute brain tissue led to the discovery that many glial cells have the capacity to respond rapidly to neuronal activity. In particular, a distinct class of neuroglial cells known as NG2 cells, which exhibit many of the properties that have been described for glial subtypes such as complex cells, polydendrocyte...

متن کامل

NG2 Cells (Polydendrocytes): Listeners to the Neural Network with Diverse Properties

NG2 cells (polydendrocytes) are the fourth major non-neuronal cell type in the central nervous system parenchyma. They exhibit diverse properties, ranging from their well-established role as oligodendrocyte precursors to their ability to respond to neurotransmitters released by synaptic and non-synaptic mechanisms. The functional diversity of NG2 cells has prompted the question of whether they ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014